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Abstract

This paper develops and applies a structural bioeconomic model of a coastal recreational fishery. We combine a dynamic

fish population model, a statistical model of angler catch rates, and a recreation demand model to estimate the value of

water quality changes for the Atlantic Coast summer flounder fishery. The model predicts that improving water quality

conditions in Maryland’s coastal bays alone would have relatively small impacts on the fishery as a whole. However, water

quality improvements throughout the range of the species could lead to substantial increases in fish abundance and

associated benefits to recreational anglers from increased catch rates. We also estimate an alternative version of the catch

function, with no direct measure of fish abundance included, and we compare results from this ‘‘reduced form’’ approach

to results from our structural model.

r 2006 Published by Elsevier Inc.
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1. Introduction

Approximately 20 million people went saltwater fishing in the year 2000, making it one of the most popular
outdoor recreational activities in the United States [24]. According to the US EPA, 51% of coastal waters are
impaired for one or more human uses [48], and studies consistently demonstrate that water quality conditions
affect recreation demand. There is a substantial body of research on the relationships between water quality
and recreational fishing in particular. However, most previous studies focus on a single element in the chain of
effects that connect water quality changes to the welfare of anglers, or they use a reduced form approach based
on cross-sectional data on trip frequencies, expected catch, and water quality across fishing sites, thereby
avoiding the measurement or modeling of fish abundance altogether. The result is a large number of studies
e front matter r 2006 Published by Elsevier Inc.
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that as a group indicate improvements in water quality may lead to substantial benefits for anglers, but
individually are difficult to combine to evaluate specific water quality policies in a comprehensive manner.

In this paper, we develop and apply a structural bioeconomic model that integrates the major links in the
chain of effects connecting water quality to angler welfare. First, we model the effects of water quality
conditions on fish survival and abundance. Second, we model the effect of fish abundance and water quality
on angler catch rates. Third, we model the effects of angler catch rates on trip demand. Combined, these form
a dynamic bioeconomic model of the effects of water quality changes on recreational fishing.

We have adopted a structural modeling approach for several reasons. First, the available datasets were
assembled independently and for purposes other than estimating a model for valuing water quality changes. In
our experience this is a common scenario, so it is important to develop methods of integrating disparate
datasets and models in an internally consistent way for policy analysis.

Second, the structural modeling approach we use provides the flexibility to evaluate a wider range of water
quality policies than most previous models. We take advantage of a detailed water quality dataset to evaluate
changes in water quality conditions on time scales as short as quarter hour intervals. Most previous models use
average annual or single point in time measures of water quality conditions. The structural model also
accounts for fish movements in and out of the study area, so it can be used to investigate the effects of the
geographic scope of water quality changes in addition to the magnitude of the changes, unlike standard
reduced form approaches. In addition, the structural model treats the recreational fishing sector and the
commercial fishing sector separately, which can provide a platform for comparing water quality policies to
fishery management policies.

Third, when analyzing a system of multiple interconnected sites, such as a coastal recreational fishery, it is
important to distinguish between the short run and long run effects of water quality (and other habitat
conditions more generally) on the species’ abundance. Given a fixed total population size, the spatial
relationship between abundance and water quality will depend on the behavioral responses of fish to the
variation in water quality conditions and fish population density across all of the interconnected sites in the
range of the species. Individuals will tend to spread out across the available habitat in such a way that balances
the positive effects of good habitat conditions and the negative effects of crowding [10,41]. Changes in water
quality will have a short run effect on the spatial distribution of individuals in the population through this
habitat selection process, and a long run effect on the overall abundance through changes in survival or
reproduction. In general the short run relationship between abundance and water quality need not be the same
as the long run effect.1 Thus, a reduced form approach that excludes potentially important dynamics that
occur at other times in the species’ life cycle can at best only implicitly capture the short run relationship and
therefore will likely produce inaccurate forecasts of the long run effects of water quality changes.

In the next section we lay out a stylized bioeconomic model that describes how a recreational fishery evolves
over time in response to water quality conditions and angler behavior. The model also provides a convenient
organizational structure for discussing previous research on recreational fishing and the structural model
developed in this paper. In Section 3, we apply our approach using data on water quality and angler catch
rates in Maryland’s coastal bays and a stated choice survey of anglers who target summer flounder on the
Atlantic Coast. Section 4 summarizes the main results and concludes.
2. A dynamic model of a recreational fishery

Water quality may affect the site choices, trip demands, and ultimately the welfare of anglers through
several pathways. First, water quality may affect fish abundance through its impact on the reproductive and
survival rates of individual fish. Thus, the abundance of fish in time period t, At, will be a function of the
abundance, the harvest, Ht�1, and water quality conditions, Qt�1, in the previous time period:

At ¼ f 1ðAt�1;Ht�1;Qt�1Þ. (1)
1The short run (spatial) and long run (dynamic) relationships between fish abundance and water quality could diverge even in a steady-

state situation. This could occur for at least two reasons: (1) water quality has different effects on different life stages of the species, and (2)

per-capita reproduction or survival rates in pre-harvested life stages are functions of population density (i.e., are ‘‘density dependent’’).
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In addition to this long run ‘‘abundance effect,’’ water quality also may influence anglers’ catch rates through
short run effects on feeding behavior and fish movements within a time period through the habitat selection
process mentioned above. Thus, the average catch per trip for angler i in time period t, Cit, will be a function
of the angler’s skill and other personal characteristics, Zi, the current fish abundance, and current water
quality conditions:

Cit ¼ f 2ðZi;At;QtÞ. (2)

Independent of the long run ‘‘abundance effect’’ and this short run ‘‘catchability effect,’’ water quality also
may have a direct ‘‘site choice effect’’ on anglers either through potential health risks from exposure to the
water or from eating contaminated fish, or through the effect of water quality on the appearance or odor of
the water body. Thus, the number of fishing trips angler i takes in time period t, Rit, will depend on travel costs
(and other site characteristics such as boat ramps, parking, etc), Xit, the angler’s personal characteristics, the
current (expected) catch, and possibly water quality conditions:

Rit ¼ f 3ðXit;Zi;Cit;QtÞ. (3)

The total harvest in period t, Ht, consists of the recreational harvest (the average catch per angler multiplied by
the number of trips per angler summed over all anglers) plus the commercial harvest, HCt:

Ht ¼
X

i

CitRit þHCt. (4)

Therefore, the average catch rate and the aggregate trip demand will determine the total recreational harvest
level, which in turn will affect the abundance of fish that can spawn to produce fish in future years (Ht will
appear in the expression for At+1 as in Eq. (1)), which will affect the catch rate in future years, which will
affect trip demand, and so on.

The most common approach for investigating the effects of water quality on recreational fishing is to
estimate some version of the trip demand function, Eq. (3), using random utility models of recreation demand
(see the reviews by Freeman [9] and Van Houtven et al. [50]). Many of these studies use measures of catch rates
as site attributes, but only a few include measures of both catch rates and water quality. Examples include
Jakus et al. [18,19], who use the presence of fish consumption advisories and average catch rates as site
characteristics, and Kaoru [20], who uses estimates of nitrogen and phosphorus discharge, biochemical oxygen
demand, and suspended solids, along with a measure of average catch.

To measure differences in catch rates across sites, most researchers use average historic catch rates at
different sites estimated either from the in-hand sample of recreators or from external sources such as the
Marine Recreational Fishing Statistics Survey (MRFSS). In cases where no direct measures of water quality
are included, catch rates themselves may be thought of as serving as a proxy for water quality conditions;
higher catch rates are assumed to be at least partly the result of better water quality. Strand et al. [40], Kaoru
[20], Jakus et al. [19], Hicks et al. [17], McConnell and Strand [26], and Morey and Waldman [30] all employ
variations of this strategy. However, there are at least two limitations to using average historic catch across all
anglers as a proxy for expected catch for individual anglers: it ignores potential variations in catch rates within
a season and across years, and it provides no explicit linkage between catch and water quality.2

To overcome these limitations, some researchers estimate the catch relationship, Eq. (2), by modeling catch
rate as a function of angler and site characteristics.3 Most of these studies use one or more measures of water
quality as explanatory variables, but we are aware of none that use a direct measure of fish abundance. For
example, Smith et al. [39] use a household production function approach to model expected catch. Landed fish
are treated as a good produced by combining human capital (hours fished, fisherman skill, etc.) and
2Another potential limitation, pointed out by Morey and Waldman [30], is that using average catch as a measure of the unknown

expected catch for each site can lead to errors-in-variables bias (though Train et al. [43] point out that the solution proposed by M&W

itself would be biased if important explanatory variables are omitted). Our recreation demand model described in Section 3.3 uses data

from a stated choice survey, so assuming the respondents considered the information presented in the survey accurate and complete our

recreation demand model should not be subject to this source of errors-in-variables bias.
3A third approach to characterizing expected catch across sites is to use subjective ratings or indices of fishing quality, usually created by

fisheries experts [28]. This method is the least common in the literature, presumably due to the difficulties of constructing valid subjective

measures.
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environmental inputs (water quality). Kaoru et al. [21], Englin et al. [8], and Lipton and Hicks [25] use similar
approaches to model expected catch, and then include the estimated expected catch as a site characteristic in
random utility models of fishing trip demands, thereby linking the catch and trip demand functions, Eqs. (2)
and (3).4

Most of the studies cited above use temporally and spatially aggregated measures of water quality
conditions, either single point-in-time measures or annual averages over large geographic areas. For example,
both Smith et al. [39] and Kaoru et al. [21] include annual county level estimates of biochemical oxygen
demand and nitrogen loadings as measures of water quality. Englin et al. [8] rely on measurements of dissolved
oxygen (DO) and turbidity taken at a single point in time for each site. These measures ignore the potential
correlations between water quality conditions and catch rates at finer scales and severely restrict the policy
scenarios that can be addressed with the final model. A few studies have used more temporally detailed
measures of water quality conditions. For example, Lipton and Hicks [25] use monthly and biweekly DO and
water temperature readings from the monitoring station nearest to the interview location on the closest date
prior to the fishing trip.

The only studies of which we are aware that use a direct measure of fish abundance are those by Cameron
[4–6] on the effects of water quality on the non-market value of the marine recreational fishery along the Texas
Gulf Coast. There is a growing body of research that uses bioeconomic models incorporating both temporal
and spatial dynamics [e.g., 35,38], but these studies generally focus on harvesting polices for commercial
fisheries. We are aware of no studies that estimate multiple models to operationalize the entire system of
Eqs. (1)–(4) to evaluate water quality changes for a recreational fishery.
3. Application: summer flounder in Maryland’s coastal bays

In this section, we develop a structural bioeconomic model of recreational summer flounder fishing. The
model incorporates data on water quality, flounder abundance, and angler catch rates in Maryland’s coastal
bays, data from a stated choice survey of anglers who target summer flounder on the Atlantic Coast, and data
on commercial harvest levels. We then use the model to evaluate the effect of several illustrative water quality
change scenarios on recreational summer flounder fishing, both in the Maryland coastal bays and across the
full range of the species.

The complex life cycle of summer flounder makes for a particularly instructive application of a structural
modeling approach. Summer flounder on the Atlantic coast of the US spend their first 1 or 2 years as juveniles
in coastal bays and estuaries mostly between Cape Hatteras, NC and Long Island, NY [1]. The adults spend
the winter months and breed in the open ocean along the continental shelf, where they are subject to a large
commercial fishery (average commercial landings between 1982 and 2001 was 8500 metric tons [31]). A large
portion of the adult stock spends the summer months along with the juveniles feeding in the coastal bays and
estuaries [22,34], where they are subject to an active recreational fishery (average recreational landings between
1982 and 2001 was 5400 metric tons [31]).

Maryland’s four coastal bays, shown in Fig. 1, are centrally located in the range of the Atlantic coast
summer flounder stock. While the coastal bays are much smaller than nearby Chesapeake Bay,5 they support a
disproportionate fraction of Maryland’s summer flounder fishery. According to NMFS, between 1994 and
2002 anglers took roughly 77,000 flounder fishing trips on average in the coastal bays per year, and at least
two thirds of the recreational harvest in Maryland during that time was from the coast [7]. The coastal bays
also serve as an important nursery for young juvenile summer flounder, who depend on the bays’ shelter and
food sources for survival in the most vulnerable portion of their lives.

As water quality conditions have worsened in recent decades due to increased residential, commercial, and
agricultural development, public concerns about the ecological health of Maryland’s coastal bays have grown.
Populations of many native fish (including summer flounder), shellfish, and underwater sea grasses have
4McConnell et al. [27,28], Jakus et al. [18], and Scrogins et al. [36] also model expected catch rates, but do not include any measures of

water quality as explanatory variables.
5The Maryland coastal bays have a surface area of 280 km2 and volume of 322 million m3, while the Chesapeake Bay has a surface area

of 18,000 km2 and volume of 68 billion m3 [29].
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Fig. 1. Maryland’s coastal bays.

D.M. Massey et al. / Journal of Environmental Economics and Management 52 (2006) 482–500486
decreased significantly from their historic levels. These decreases have prompted a number of measures to
protect or restore habitat and water quality conditions in the coastal bays ecosystem including a
comprehensive conservation and management plan, numerous water quality monitoring programs, and the
establishment of Total Maximum Daily Loads [51].

The following sub-sections describe the components of our structural model of the recreational summer
flounder fishery in the Maryland coastal bays in detail and present and discuss our estimation results. Sections
3.1–3.3 describe the population model, the catch model, and the recreation demand model, respectively.
Section 3.4 combines the models and uses the integrated model to evaluate several illustrative water quality
improvement scenarios.

3.1. The population model

The first component of our bioeconomic model is a model of population dynamics that incorporates
functional relationships between water quality conditions, summer flounder survival and abundance, and
recreational and commercial harvest levels. The model is age-structured to account for different sources of
mortality during different flounder life stages, and it is spatially structured to account for annual flounder
migrations between coastal waters and the open ocean. In the bays and estuaries during the summer DO
affects juvenile flounder and recreational fishing affects adult flounder. In the open ocean during the winter
commercial fishing affects adult flounder.

The model is designed to allow simulation of changes in water quality conditions in estuaries and bays in
and out of the study area independently. This will be important for evaluating policies that might affect water
quality in only part of the species’ range, and it provides the flexibility for investigating the effects of the
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Fig. 2. Schematic representation of the population model.
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geographic scope of improved water quality conditions in addition to the magnitude of the changes. The
model also is designed to be calibrated using readily available information on recreational harvest levels in and
out of the study area and commercial harvest levels for the fishery as a whole. The model is briefly explained in
the following paragraphs and summarized in Figs. 2 and 3; the full specification and notes on model
calibration are given in Appendix A and in the online supplement.

As shown in Fig. 2, reproduction is modeled as a function of the size of the entire breeding stock in the open
ocean. Reproduction and survival through the egg and larval stages are assumed to be density dependent, i.e.,
the per capita reproductive rate declines with increasing spawning stock abundance. Survival of juveniles is
modeled as a function of the time series of DO concentrations during the months of May–August. Young
juvenile summer flounder are known to be especially sensitive to DO conditions, particularly in the summer
when DO can reach very low levels during the morning hours and when high nutrient loads flushed from
agricultural fields after storm events can spur algal growth and subsequent oxygen depletions in the water
column [1,49]. The juvenile survival function is based on results from laboratory experiments conducted by the
Environmental Protection Agency [46] (see Fig. 4) and is calibrated to match baseline conditions. We use a
model that estimates the probability of survival as a function of exposure to a constant DO level for a 15-min
interval. To estimate survival over the entire season, a time series of DO levels is simulated by drawing
randomly from the empirical DO distribution as measured at two continuous monitoring stations in the study
area. The probability of survival over the entire season is then computed as the product of survival
probabilities over each interval, assuming survival probabilities from one interval to the next are independent.
The survival function will be responsive not only to changes in the annual average DO levels, but also to
changes in the variation and the frequency of extremely low DO levels on very short time scales. This provides
the ability to model any water quality change scenario that can be described by a frequency distribution of DO
levels measured on time scales as short as 15min, and therefore the flexibility to evaluate a much wider variety
of water quality policies than would be possible with models that include only annual average DO levels.6
6However, our survival function is still overly simplified in one important sense: the cumulative probability of survival over the season

will not be sensitive to the temporal ordering of water quality conditions during the season. For example, according to this model a long

string of intervals with low DO levels is equivalent to the same total duration of low DO conditions spread out evenly over the season. In

reality, survival probabilities are not likely to be independent across time intervals. In future work it will be important to develop improved

laboratory or field methods for measuring the frequency- and duration-dependence of survival rates on water quality conditions, and

models for translating the results of such experiments to natural settings.
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Because our study area encompasses only a small part of the range of the Atlantic stock of summer
flounder, we must account for the fact that some portion of the population will move in and out of the study
area from year to year. We model the stock as consisting of two connected sub-populations defined by the
boundary of the study area and the remainder of the range of the stock. As shown in Fig. 3, a fixed proportion
SF of adults are assumed to return to the same bay or estuary they inhabited the previous year. (SF represents
the species’ ‘‘site fidelity,’’ i.e., the genetic pre-disposition of individuals to return to the same area in
subsequent years.) Also, a fixed proportion g of the remaining adults and juveniles are assumed to be carried
into Maryland’s coastal bays with the prevailing tides and currents every year [34].

Parameters for the population model are taken directly from government reports, internet databases, and
peer-reviewed literature, or they are estimated by calibrating the model so the equilibrium recreational and
commercial harvest levels under baseline conditions match the average historic harvest levels.

3.2. The catch model

To estimate the relationship between fish abundance, water quality, and expected catch, we use three
datasets from Maryland’s Department of Natural Resources (MD DNR). Water quality data were obtained
from the MD DNR Eyes on the Bay program. Monthly water quality measurements taken at 23 monitoring
stations located throughout the four coastal bays were used to calculate average levels of DO, water
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Table 1

Regression results for the catch function and an alternative ‘‘reduced form’’ version without the abundance index

Variable With abundance index Without abundance index

Coefficient t-Stat Coefficient t-Stat Mean of X

Constant �6.887 �3.159 �6.253 �2.926

Angler characteristics

ln (hours fished) 1.509 5.821 1.425 5.687 0.561

ln (anglers) 0.806 5.271 0.849 5.453 0.675

Fished from shore �0.430 �1.395 �0.509 �1.738 0.036

Fished from charter boat 0.501 2.944 0.475 2.729 0.332

Location fixed effects

Isle of Wight Bay �0.121 �0.908 �0.208 �1.664 0.275

Sinepuxent Bay �0.372 �1.088 �0.932 �3.00 0.403

Chincoteague Bay �1.250 �2.53 �1.381 �2.682 0.013

Isle of Wight or Sinepuxent 0.206 0.873 �0.079 �0.358 0.220

Water quality conditions

DO 0.0287 0.431 0.177 3.076 6.250

Water temp 0.109 4.05 0.126 4.55 24.180

Salinity 0.132 1.719 0.077 1.041 30.930

Secci depth 1.067 2.883 1.392 3.829 0.543

Fish abundance

ln(average trawl catch) 0.328 4.404 — — 0.286

Number of observations 612 612

Squared correlation between predicted means

and observed catch

0.55 0.55
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temperature, salinity, and secci depth in each bay in 2002 from April through October. Catch data were
obtained from the 2002 MD DNR Summer Flounder Volunteer Angler Survey, which asked anglers who
fished for summer flounder in Maryland to report the details of each of their fishing trips. The information
collected includes the date of each trip, total catch, location fished, fishing method used, party size, hours
fished, and several demographic characteristics. Our analysis uses data on 612 trips taken to the four
Maryland coastal bays. Fishery-independent data on fish abundance were obtained from the Maryland
Coastal Bays Finfish Project, which performs bottom trawl surveys at 20 sites in the coastal bays every month
April–October. The average number of summer flounder captured per haul is used as an index of fish
abundance for each bay in each month in 2002. Trip and angler characteristics from the Volunteer Angler
Survey were matched with water quality measures from the Eyes on the Bay program and the fish abundance
index from the Coastal Bays Finfish Project to create the dataset used for estimation.

Because the data on catch per trip come in the form of non-negative integers, we use a negative binomial
count regression model to estimate the catch function [3], and we use a standard exponential mean function to
specify the average reported catch per trip:

E½Ci� ¼ expðZidþQigþ y ln ~AiÞ, (5)

where Ci is the reported summer flounder catch, Zi is a vector of angler characteristics, Qi is a vector of water
quality measures, ~Ai is the index of fish abundance (average trawl catch), and d, g, and h are parameters to be
estimated. Regression results are shown in the first two columns of Table 1. All angler characteristic variables
possess their anticipated signs, and coefficients on the log of hours spent fishing, the log of the number of
anglers in the party, the ‘‘fished from charter boat’’ dummy variable, and the abundance index are statistically
significant at greater than the 99% level. The estimated magnitude of the abundance index coefficient is 0.328,
which means that a 1% increase in fish abundance will lead to a 0.328% increase in the average catch rate.7
7Because the natural log of the abundance index is used in the exponential mean function of our estimating equation, the catch function

in Eq. (5) corresponds to the functional form used for the average recreational catch in the population model in the appendix. If the
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The coefficient estimates on all water quality variables also are of the expected sign, and the coefficients on
water temperature, secci depth, and salinity are statistically significant at the 90% level or greater. Assuming
that fish abundance is adequately controlled for by the abundance instrument, these results suggest there also
is a ‘‘catchability effect’’ of water temperature, secci depth, and (possibly) salinity. Only the dummy variable
for Chincoteague Bay was statistically different from the control bay, Assawoman Bay, which suggests that
the measures of water quality and fish abundance explain most of the variation in catch between the bays.8

We also estimate an alternative version of the catch function where the abundance instrument is excluded.
The results of this regression are shown in the second two columns of Table 1. When the model is estimated
with the abundance index excluded, DO becomes highly statistically significant. This indicates a strong
positive correlation between fish abundance and DO. Taken together, the results of the two versions of the
catch model suggest that the primary effect of DO on catch is through its effect on fish abundance, not
through an effect on catchability.
3.3. The recreation demand model

To estimate the relationship between catch and recreation demand we use stated choice data from the 2000
Survey of Northeast Recreational Anglers [16]. The survey was conducted by the National Marine Fisheries
Service to evaluate angler preferences for various fishery management alternatives. Each respondent was
presented with four stated choice questions in a conjoint format concerning summer flounder fishing in the
Mid-Atlantic region. In each question, respondents were asked to choose between two alternative summer
flounder fishing trips and a ‘‘do something else’’ option. The attributes that could differ between the options
included travel costs, likely total catch, the minimum size limit, the catch limit, the likely number of legal-sized
summer flounder caught, and the likely total catch of other fish species.9

We model survey respondents’ stated choices using a repeated choice mixed logit model [23,33,44]. The
utility individual i would receive from selecting alternative k on choice occasion t is specified:

Uikt ¼ Zikui þ eikt, (6)

where Zik is a vector of individual and site characteristics. The model assumes that individuals choose
the alternative that provides the maximum utility on each choice occasion. Each individual also is assumed to
have a unique vector of coefficients ui that vary normally across individuals, are uncorrelated with each
other, and are constant across choice occasions.10 The error term eikt is assumed to be distributed identically
and independently according to an extreme value distribution, which gives rise to the logit probability
function. The probability that individual i makes a sequence of choices yi over a series of choice
occasions t ¼ 1; 2; . . . ; T , given their preferences as described by ui, is then the product of logit formulas.
However, because the true coefficient values are unknown and assumed to vary across individuals, the
logit probability function must be integrated over all possible values of ui. Due to the analytical difficulty
(footnote continued)

abundance index, ~Ai, is proportional to the actual adult abundance, Ai, i.e., ~Ai ¼ nAi, then we can define hi ¼ expðZidþQigÞn�y and

rewrite our catch equation as Ci ¼ hiA
y
i , as in Eqs. (A.10) and (A.11). This allows us to calculate the average catch per angler as a function

of adult summer flounder abundance, which provides the link between the catch function and the bioeconomic simulation model. For the

link between fish abundance and commercial catch we have assumed that the commercial harvest is directly proportional to the stock size

(i.e., y ¼ 1), which means that the response to increased fish abundance in the commercial fishery will be greater than that in the

recreational fishery. This is consistent with standard commercial fisheries models (e.g., [13]), though this convention has been challenged by

Harley et al. [15] who found values of y in the range 0.64–0.75. However, we do not have comparable data on effort and harvests for the

commercial fishery so we cannot estimate this relationship directly for our case study.
8Other functional forms—with linear or quadratic abundance instrument terms or both—also were estimated for the catch function.

None of the alternative specifications clearly performed better that the version reported in Table 1. Furthermore, this functional form

facilitated a natural linkage between the catch model and the population models, as discussed in footnote 7.
9Note that no water quality characteristics were described in the stated choice survey. Even if they were, this would provide a means of

estimating the ‘‘site choice effect’’ of water quality only (Eq. (3)).
10The assumption that coefficients are constant across choice occasions is reasonable if tastes are thought to be stable over time.
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Table 2

Results of the mixed logit recreation demand model

Variables Mean coefficient Standard deviation

Estimate t-Stat Estimate t-Stat

No trip dummy (NTD) �0.9931 �2.521 2.0333 3.446

Participant characteristics

NTD�boat owner �0.2474 �0.762 0.9702 1.348

NTD�non-white �0.7729 �0.642 3.5411 2.001

NTD�male �1.6909 �1.346 1.8220 0.858

NTD�attended college �0.1780 �0.284 2.0536 1.866

NTD�work fulltime �1.1851 �3.368 1.7234 2.733

NTD�daysfished �0.0879 �1.856 0.1085 2.679

Trip characteristics

Travel cost �0.0175 �13.044 — —

Total catch 0.0717 12.277 0.0746 6.108

Bag limit 0.1050 16.415 0.0854 5.320

Min size�legal catch 0.0131 18.135 0.0101 9.039

Other fishing good 0.4208 7.134 0.9699 6.501

Other fishing bad �0.5767 �10.255 0.7594 6.047

Number of respondents 2392

Number of observations 9568

Mean log-likelihood �0.7806
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of evaluating multiple integrals, results are most easily obtained through simulation. The simulated
probability is

SPðyijwÞ ¼
1

D

XD

d¼1

YT
t

expðZikt
/d

i ÞP
j

expðZij/
d
i Þ

2
64

3
75, (7)

where w contains the means and variances of the ui distributions, D is the number of draws, /d
i is draw d from

the estimated distribution of ui, and the term in square brackets is the product of logit formulas.11 The
simulated probabilities are used to construct a simulated likelihood function that is then maximized to
produce estimates of the parameters of the u distribution.

Results from the repeated choice mixed logit model are shown in Table 2. The travel cost coefficient is
negative and statistically significant, as expected, indicating that all else equal anglers prefer to fish at sites
closer to home and therefore less costly to visit. The results also indicate that anglers are more likely to visit
sites with higher total catch, bag limits, legal take-home catch of summer flounder, and total catch of other
fish. Preferences for each trip characteristic (save travel cost, which was not allowed to vary across anglers to
aid estimation) were also found to vary significantly across the population. Aside from days fished and
working fulltime, which both increased a respondents’ probability of taking a trip, respondent characteristic
variables explained little of the variation in respondents’ participation choices.

The results of the recreation demand model allow us to estimate the value of changes in trip attributes to
anglers. Following Small and Rosen [37] and Hanemann [14], changes in expected utility are monetized using
the coefficient estimate on the travel cost variable, which is the estimated marginal utility of income.12 Because
the mixed logit model estimates the distributions of the coefficients, calculating the welfare effects of changes
to sites in the choice set again requires simulating integration. For example, the expected welfare change for
11We use 400 Halton draws for estimation and 250 for welfare calculations [45, pp. 224–234].
12Alternative models including participants’ income and income squared were also estimated. Income was not statistically significant in

either case, so it was dropped from the model. (Also note that the travel cost parameter gives a direct estimate of the marginal utility of

income only if income itself does not appear in the model as a separate explanatory variable.)
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individual i associated with a change in quality at some or all of the sites would be

W i ¼
1

D

XD

d¼1

ln
PK

k¼1 expðZik/
d
i Þ � ln

PK
k¼1 expðZ

�
ik/

d
i Þ

fTC

" #
, (8)

where D is the total number of draws from the estimated distributions, /d
i is draw d from the distribution of

/i, the numerator of the bracketed term is the difference in the expected maximum utility per choice occasion
between the current and changed conditions, fTC is the travel cost coefficient, and Z�ik is a vector of changed
quality measures at some or all of the K sites.

The results indicate that at the average catch rate from the MD DNR Summer Flounder Volunteer Angler
Survey, which is approximately two fish per angler per trip, a 1% increase in the catch rate increases the value of
each choice occasion by $0.084. Values for extra percentage point increments are nearly constant over a large
range, so the value per choice occasion for a 50% (roughly one fish) increase in the catch rate is $4.22. This
estimate is somewhat larger than the value of an increase of one fish per trip for bottom fish in Maryland reported
by Hicks et al. [17], which was $2.44, but it is near the low end of the range of values for an increase in catch of
one fish per trip found in the marine recreation literature summarized by Freeman [9], which was $2.21–$85.00 in
1991 (most values were below $20). Our estimates are per choice occasion values, so all else equal they should be
smaller than per trip value estimates because there are more choice occasions than trips taken.

The total welfare change per year in the recreational fishery is computed by multiplying the per angler per
choice occasion welfare estimate by the number of potential anglers, N, and the number choice occasions in a
season, O. We estimate the product N �O using the identity T � N �O� p, where T is the total number of
summer flounder fishing trips taken in a year, and p is the average probability of taking a trip on any choice
occasion. The average number of summer flounder fishing trips to the four coastal bays between 1994 and 2003
was 76,602 trips per year. We calculate the average probability of taking a trip on any given choice occasion
using responses to a supplemental question in the stated choice survey where respondents were asked how many
times they took a fishing trip in the previous 2 months. Responses ranged from 0 to 61 days, and the average
response was 10.4 days in the previous 2 months, or 17%, which we take as our baseline estimate of p. This
gives a value of 450,600 angler choice occasions per year (N �O), which leads to a predicted aggregate welfare
change of $1.9 million per year from increasing the average catch per trip in the study area by 50%.
3.4. Evaluating water quality changes

We can now combine the population model, the catch function, and the recreation demand model to
evaluate the long run effects of changes in water quality on summer flounder fishing. A change in DO
conditions first causes a change in the survivorship of young juvenile flounder over the summer months, and
after 2 years the first new larger cohort of young juveniles is recruited to the adult population (the population
model). This increases the availability of catchable fish and therefore the average catch per angler (the catch
model),which in turn leads to an increase in demand for trips (the recreation demand model).13 The increase in
catch per angler and demand for trips combine to yield a new, higher total harvest in the recreational and
commercial fisheries, which partly offsets the increase in fish abundance from the improved DO conditions
(the population model again). After a transition phase the system will reach a new stochastic steady state
where the distribution of fish abundances and the harvest levels will remain stable over time.

With the catch and recreation demand parameters estimated and the population model specified, starting
values for all state variables are determined by calibrating the population model to current water quality
conditions. Benefits are estimated by comparing simulated baseline and water quality change scenarios. For
the baseline scenario, a time series of DO levels during the summer is constructed for each year in a 100 year
13The effect of changes in expected catch on the probability of taking a trip is calculated using an auxiliary regression. We use results

from the mixed logit recreation demand model to estimate the average change in the probability of taking a trip across all individuals in the

dataset, DpðZ;/Þ, for a variety of changes in expected catch rates, DC (i.e., for each level of DC, DpðZ;/Þ was calculated by integrating over

the heterogeneity in tastes represented by the estimated random parameter distributions from the Mixed Logit model for each individual

and then taking the average over all individuals). We then regress the estimated DpðZ;/Þ’s on the DC’s, which provides the link between

the recreation demand function and the bioeconomic simulation model.
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Fig. 5. Two water quality changes scenarios were analyzed: a 25% increase in DO levels at all times (top panel), and a 50% reduction in

the frequency of DO below 2mg/L (bottom panel). In each panel the solid line represents the baseline DO distribution and the dotted line

represents the new (changed) DO distribution.
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forecast horizon by drawing randomly from the empirical DO distribution. For the water quality change
scenarios, time series of DO levels are constructed by modifying the baseline series, as shown in Fig. 5. The top
panel illustrates a case where the baseline DO levels are increased by 25% at all times. The bottom panel
illustrates a case where 50% of the DO levels below 2mg/L in the baseline distribution have been replaced by
random draws from the remainder of the distribution. The across-the-board increase in DO is typical of the
water quality change scenarios examined by previous researchers using reduced form models. The reduction in
the frequency of low DO events provides an example of a more complex (and potentially more realistic)
scenario that can be directly evaluated by our structural model but not by a reduced form model.

Results from the water quality change scenarios are summarized in Table 3. To account for the natural
variability in water quality conditions from year to year, we run the model 100 times using a different
simulated DO series each time. The estimated aggregate welfare effects are reported as the constant annual
equivalent of the stream of benefits from year 1 onward discounted at 5%.14 Numbers in parentheses are 95%
confidence intervals based on the 100 Monte Carlo trials.
14We calculate the annualized aggregate benefits as follows: Benefits ¼ V̄ ð1þ rÞ�T
þ r

PT
t¼1

Vtð1þ rÞ�t, where r is the discount rate, Vt is

the current value of the benefits in year t, T is the simulation forecast horizon, and V̄ is the average benefits for some suitably long span of
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Table 3

Summary results for four water quality change scenarios

Baseline

conditions

25% increase in

DO levels in the

study area

25% increase in

DO levels

everywhere

50% reduction in

occurrences of

DOo2mg/L in the

study area

50% reduction in

occurrences of

DOo2mg/L

everywhere

Levels [% change] [% change] [% change] [% change]

In the study area

DO 6.07 25 25 1.0 1.0

sj 0.452 55.5 55.5 50.6 50.6

(47.5, 64.5) (47.5, 64.5) (41.3, 59.0) (41.3, 59.0)

C 1.93 2.34 18.7 2.10 17.0

(1.97, 2.77) (15.7, 22.1) (1.74, 2.47) (13.9, 20.0)

T 76,600 0.10 0.77 0.09 0.70

(0.08, 0.11) (0.65, 0.91) (0.07, 0.10) (0.57, 0.82)

H 46,033 2.44 19.6 2.19 17.8

(2.05, 2.88) (16.5, 23.3) (1.81, 2.57) (14.5, 20.9)

Benefits [$1,000] $85.3 $630 $74.4 $556

($65.9, $106) ($483, $789) ($54.8, $94.0) ($408, $712)

Out of the study area

DO 6.07 0 25 0 1.0

sj 0.452 0 55.5 0 50.6

(47.5, 64.5) (41.3, 59.0)

C 1.93 0.17 18.7 0.15 17.0

(0.14, 0.21) (15.7, 22.1) (0.12, 0.19) (13.9, 19.9)

T 9,920,000 0.01 0.77 0.00 0.70

(0.01, 0.01) (0.65, 0.91) (0.00, 0.00) (0.57, 0.82)

H 5,960,000 0.18 19.6 0.15 17.8

(0.14, 0.22) (16.5, 23.3) (0.12, 0.19) (14.5, 20.9)

Benefits [$1,000] $715 $81,600 $615 $72,000

($508, $956) ($62,500,

$102,000)

($427, $830) ($52,800, $92,200)

S 29,300,000 0.64 80.2 0.57 71.7

H 7,720,000 (0.51, 0.81) (64.4, 100) (0.45, 0.70) (56.8, 87.0)

Numbers in parentheses are 95% confidence intervals across years based on 100 Monte Carlo trials (accounting for natural variation in

water quality conditions only). Benefits are reported as annualized values based on a 5% discount rate in thousands of dollars.

D.M. Massey et al. / Journal of Environmental Economics and Management 52 (2006) 482–500494
First, we note that the two water quality change scenarios—where DO is increased by 25% across-the-board
and where the frequency of DO levels below 2mg/L is reduced by 50%—have similar impacts. This result may
seem surprising at first considering the large apparent differences between the changed DO distributions in
Fig. 5, but it follows directly from the highly non-linear DO dose–response function for juvenile summer
flounder survival (refer back to Fig. 4). There is a very narrow range of DO levels, between about 1.25 and
1.75mg/L, through which the 24-h juvenile survival rate increases from near zero to near one. Thus, changes
made at the very low end of the DO distribution matter most.

The model predicts that if water quality is improved only in the study area then impacts on the fish
population and benefits to anglers will be relatively small. Simulated water quality improvements in the
study area alone are predicted to increase catch rates by approximately 2% in and 0.2% out of the study
area. However, if water quality is improved in all bays and estuaries throughout the range of the species,
then catch rates and harvest levels are predicted to increase by approximately 20%. The differences between
(footnote continued)

time towards the end of the forecast series, after the system has reached a new stochastic steady state. New steady-state conditions are

reached within approximately 20 years, so we use the last 50 years of our 100 year forecast horizon to calculate V̄ . The 5% discount rate is

between the 2% to 3% recommended by EPA and the 7% recommended by the Office of Management and Budget [47].
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the in and out of study area scenarios is due to the mixing of the adult stock in the open ocean during
the winter (refer back to Figs. 2 and 3). Only a portion of the juveniles subject to the improved water
quality conditions in the study area will return to the study area the next year as adults, and the next year
only a fraction of those will return, and so on. Thus, the number of adult fish available to be caught in-
creases by only a fraction of what would occur if either site fidelity were absolute or if the water quality
improvements affected the entire population (compare the results in columns 2 and 4 with those in columns 3
and 5 of Table 3).15

Note that even in cases where water quality improvements are confined to the study area, the aggregate
benefits are much larger out of the study area than in. This is because even though the per angler welfare
effects are an order of magnitude smaller out of the study area, the number of anglers to which these external
benefits accrue is two orders of magnitude larger than the number in the study area.

As a final illustration we compare results from our structural model to what would be inferred directly from
the reduced form version of the catch function (shown in the second two columns of Table 1). First, we can
compare the reduced form catch model to the structural model under the assumption that DO is increased by
25% at all times (Fig. 5 top panel). This is a relatively direct comparison because the reduced form catch
model includes the average monthly DO level as an explanatory variable and a 25% increase in DO at all times
translates directly into a 25% increase in the monthly average. At the observed monthly average DO levels the
predicted catch per angler averaged across all individuals in the dataset is 1.93 fish, and if all monthly DO
levels are increased by 25% the average predicted catch using the reduced form model is 2.53, an increase of
31%. Compare this to the approximately 2% and 20% increases predicted by our structural model reported in
Table 3. In this case, using the reduced form version of the catch function to analyze water quality changes
would drastically overestimate the potential benefits to anglers if water quality improvements are confined to
the study area. This is because the spillover effects from fish migrations out of the study area are not accounted
for in the reduced form model. The reduced form model also would overestimate, though to a lesser degree,
the potential benefits if water quality conditions are improved in all bays and estuaries throughout the range of
the species. This suggests that in this case the short run spatial relationship between adult fish abundance and
water quality (which is all that the reduced form model can possibly capture) is different from the long run
effect of water quality improvements on overall fish abundance (which is embodied in our bio-economic
simulation model via the effect of DO on juvenile survival).

Second, we can compare the reduced form and structural models under the assumption that the frequency
of DO occurrences less than 2mg/L is reduced by 50% (Fig. 5 bottom panel). This comparison is much less
direct than the previous one because the reduced form model cannot accommodate temporal units shorter
than a month and therefore will effectively treat any change in the DO distribution that leads to an X%
change in the monthly average the same. As shown in Table 3, reducing the frequency of these low DO events
by 50% leads to a 1% increase in the average DO level. According to the reduced form model, if the average
monthly DO level is increased by 1%, the average catch will increase by 1.1%. This is lower than the change in
catch predicted by the structural model for the case where water quality is improved only in the study area
(E2%), and drastically so for the case where water quality is improved throughout the range of the species
(E20%). It is easy to understand why the reduced form model under-estimates the change predicted by the
structural model in this case when one considers how the two models incorporate water quality data: monthly
averages in the reduced form versus 15minute increments in the structural. While the reduced form model will
treat any change in the DO distribution that leads to an X% change in the monthly average the same, the
structural model will treat water quality changes very differently depending on how the DO distribution is
modified (particularly at the low end) because of the nature of the juvenile flounder DO dose response
function. Thus, the application of the reduced form model is more of a ‘‘forced fit’’ for this water quality
change scenario, which highlights another limitation of a reduced form modeling approach.

These results illustrate some of the practical advantages of a structural approach that explicitly accounts for
the key biological and economic dynamics over a reduced form approach that would rely mainly on the cross-
sectional relationship between catch or trip demands and water quality. A reduced form approach cannot
15A sensitivity analysis reveals that the distribution of benefits between the study area and the remainder of the fishery are strongly

influenced by SF, the site fidelity parameter. However, the aggregate benefits change only modestly over the full possible range of SF, 0 to 1.
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account for the effect of fish migrations on responses to changes in water quality, nor can it be directly applied
to scenarios based on water quality changes at temporal scales other than the scale used in estimation. For
these reasons, a reduced form model can generate substantially different quantitative predictions than a
structural model, even when applied to the same scenarios.

4. Summary and conclusions

In this paper we have developed and applied a bioeconomic model of a coastal recreational fishery for
estimating the value of water quality changes. A variety of information sources and datasets were used to
specify a biological model of summer flounder population dynamics and to estimate a count regression model
of catch rates and a mixed logit recreation demand model. The models were combined in a bioeconomic
framework and calibrated to baseline conditions using historic recreational harvest levels from both in and out
of Maryland’s coastal bays and commercial harvest levels for the entire fishery.

The structural modeling approach developed in this paper can evaluate scenarios based on a wide variety of
changes in the distribution of water quality conditions on time scales as short as quarter hour intervals.
Standard reduced form approaches using cross-sectional data on trip frequencies or catch rates and water
quality conditions across sites typically are able to evaluate changes in average annual conditions only.
Furthermore, the structural approach developed here incorporates important effects of water quality on
juvenile fish survival, which will influence the long run adult fish abundance and recreational catch. Reduced
form models typically cannot capture this effect or other potentially important biological dynamics and
therefore will likely lead to inaccurate forecasts of long run changes.

The structural bioeconomic model was used to evaluate two water quality change scenarios based on
simulated DO distributions using data from Maryland’s coastal bays. The results indicate that substantial
increases in summer flounder populations and associated benefits to recreational anglers may be possible if
water quality conditions are improved in all bays and estuaries throughout the range of the species. If water
quality improvements are confined to a small area, however, only relatively small increases will be possible.

The estimated changes in recreational harvest levels are a consequence of the combined effects of the
response of the fish population to changes in DO conditions, the response of catch rates to changes in fish
abundance, and the response of trip demand to changes in average catch rates. The estimated harvest changes
are appreciable for what seem to be reasonable assumptions about potential improvements in water quality
conditions, but such gains may require water quality improvements across large portions of the species’ range.

We also showed that very different quantitative results can be obtained if a reduced form approach is used
instead of a structural modeling approach. These results highlight the importance of appropriately accounting
for the spatial and temporal dynamics of species’ responses when valuing changes in environmental conditions.
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Appendix A

This appendix provides the full specification of the population model. Equations and definitions for all state
variables are shown below, and definitions and values used for all parameters are given in Table A1. Datasets
and Matlab programs used to simulate the bioeconomic model are provided in an online supplement:

Jt ¼ St�1
a

1þ St�1=b

� �
, (A.1)
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Table A1

Information sources and calibration procedures for key parameters and state variables in the population model

Parameter or state variable Symbol Value Source(s) or calibration procedure

Number of juveniles surviving to the early

summer per adult at very low stock size

a 98.1 Estimated by calibrating the model so the

dominant eigenvalue of the annual transition

matrix with no density dependence or fishing

mortality equals l [11].

Geometric growth rate at low population size l 1.728 Estimated from a Ricker stock recruitment

model using data from [32] and assuming

reproduction begins at age 2 and M ¼ 0:2.
Stock size at which egg and larvae survival

probability is half the maximum

b 14,820,027 Estimated by calibrating the model so the

predicted equilibrium commercial harvest

level under baseline conditions equals the

average historic harvest.

Proportion of new eggs and larvae deposited

in the study area every year

g 0.0213 Estimated by calibrating the model so the

recreational harvest levels inside and outside

of the study area match historic average

levels.

Site fidelity SF 0.5 Based on qualitative information in

[1,12,22,34].

Winter survival probability of young juveniles

(September–April)

sjw 0.205 Adapted from [49]. The value reported for

annual survivorship is e�2:38 ¼ 0:093. We use

e�2:38�8=12 ¼ 0:205 for winter survivorship.

Exposure coefficient x 0.378 Calibrated so sjst ¼ s0jsat baseline DO

conditions.

Baseline summer survival probability of

young juveniles (May–August)
s0js 0.452 Adapted from [49]. The value reported for

annual proportional survivorship is

e�2:38 ¼ 0:093. We use e�2:38�4=12 ¼ 0:452 for

summer survivorship.

Maximum quarter hour survival probability a 0.9976 Set so sjst ¼ smax
js when DOb3 8t; i.e.,

a ¼ ðsmax
j Þ

1=123.

Maximum summer survival probability of

young juveniles

smax
js 0.75 Assumed.

Parameters of sigmoid juvenile survival

function

b1 0.4604 [46] and Glen Thursby, US EPA Office of

Research and Development (personal

communication).

b2 �8.23

Annual survival probability of mature

juveniles

sm 0.819 [49]

0.27 [12]

Instantaneous natural mortality rate for

adults during winter

M 0.2 [42]

Instantaneous commercial fishing mortality

rate

F 0.26 [42]

Winter survival probability of adults sa 0.632

sa ¼ e�M�F , also see [12]

Average catch per trip under baseline

conditions
Cin

0
1.93 Average catch per angler per trip reported in

MD DNR Summer Flounder Volunteer

Angler Survey.

Historic average number of summer flounder

recreational fishing trips in the study area
Tin

0
76,602 Average number of summer flounder fishing

trips in Worcester County, MD between 1994

and 2003 (computed from MRFSS data).

Historic average harvest level out of the study

area
HRout

0 5,901,406 Average of total recreational landings

between 1994 and 2001 [2] minus Cin
0 � Tin

0 .

Adult abundance outside of the study area

under baseline conditions
Aout

0 Based on assumption that HRin=Ain ¼

HRout=Aout under baseline conditions.

Historic average commercial harvest HC0 7,720,303 Average total commercial harvest between

1994 and 2001, assuming 0.75 kg/fish [31].
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Jin
t ¼ Jtg, (A.2)

Jout
t ¼ Jtð1� gÞ, (A.3)

Min
t ¼ Jin

t�1sjtðSF þ ð1� SF ÞgÞ þ Jout
t�1sjtð1� SF Þg, (A.4)

Mout
t ¼ Jin

t sjt 1� SFð Þð1� gÞ þ Jout
t sjtð1� ð1� SF ÞgÞ, (A.5)

sjt ¼ sjwsjst ¼ sjw

Y242
d¼121

Y96
q¼1

fxs0:25 þ ð1� xÞg

" #
, (A.6)

s0:25 ¼
a

1þ ðDO0:25=b1Þ
b2
, (A.7)

Ain
t ¼ ½ðA

in
t�1 �HRin

t�1Þsa þMin
t�1sm�ðSF þ ð1� SF ÞgÞ þ ½ðAout

t�1 �HRout
t�1Þsa þMout

t�1sm�ð1� SF Þg, (A.8)

Aout
t ¼ ½ðA

in
t�1 �HRin

t�1Þsa þMin
t�1sm�ð1� SF Þð1� gÞ þ ½ðAout

t�1 �HRout
t�1Þsa þMout

t�1sm�ð1� ð1� SF ÞgÞ,

(A.9)

HRin
t ¼ Tin

t Cin
t ¼ Tin

t hin
ðAin

t Þ
y, (A.10)

HRout
t ¼ Tout

t Cout
t ¼ Tout

t hout Aout
t

� �y
, (A.11)

HCt ¼ ðA
in
t �HRin

t þ Aout
t �HRout

t Þð1� saÞ
F

M þ F
, (A.12)

St ¼ Ain
t �HRin

t þ Aout
t �HRout

t �HCt, (A.13)

where Jt is the number of young juvenile summer flounder (less than one year old) laid as eggs in the late
months of the previous year (November is the peak of the breeding season) that survive through the egg and
larval stages on their journey from the open ocean to the coastal bays and estuaries, St is the number of
spawning adults in year t, Jin

t and Jout
t are the number of young juveniles in and out of the study area in year t,

Min
t and Mout

t are the number of mature juveniles (between 1 and 2 years old) in and out of the study area in
year t, sjt is the young juvenile survival probability in year t, sjw is the young juvenile survival probability over
the winter months, sjst is the young juvenile survival probability over the summer months in year t, Ain

t and
Aout

t are the number of adults (2 years and up) in and out of the study area in year t, HRin
t and HRout

t are the
number of adults harvested in the recreational fishery in and out of the study area in year t, Tin

t and Tout
t are

the number of recreational fishing trips in and out of the study area in year t, Cin
t and Cout

t are the average
catch per angler per trip in and out of the study area in year t, and HCt is the number of adults harvested in
the commercial fishery in year t.
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